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CLOSE-LOOP DOPPLER CORRECTION SCHEME 

Peter E. O’Neill, Jr. 
Communications Research Branch 

ABSTRACT 

Doppler frequency shift occurs when there is relative velocity be- 
tween a satellite and ground station. The normalized frequency error  
is v /c , where v is the relative velocity %etween the satellite and the 
ground station and c is the speed of light. 

This document describes a technique for reducing the effective 
Doppler frequency shift. This technique can reduce the Doppler effect 
to approximately second order, (v /c ) 2. Experimental data have verified 
the technique, differing from theoretical predictions by 3 percent. A 
ground-controlled satellite clock with a stability of 5 parts in 1 O l o  was 
established in Relay II. Without the Doppler correction scheme, the 
normalized frequency er ror  can exceed 1 part in 10’. 

This document presents what is believed to be a unique analysis of 
the Doppler correction scheme in the variable velocity case with as- 
sociated experimental verification. 
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CLOSED-LOOP DOPPLER CORRECTION SCHEME 

INTRODUCTION 

When there is relative motion between a transmitter (T) and a receiver (R),  
the frequency of the signal detected at the receiver will not be the same’ as that 
sent from the transmitter. This change in frequency is called the Doppler fre- 
quency shift. 

By using closed-loop techniques, it is possible to correct for Doppler fre- 
quency shift. The signal at R is retransmitted back to T. The frequency dif- 
ference between this signal and the originally transmitted signal is a measure of 
the two-way Doppler frequency shift. Using the standard technique,’ it can be 
shown that: 

c -v 
fT ’ f = -  

R C  

C 

c + v  
f’ = -fR, 

c c - v  
fT ’ -- - - 

c + v  c 

c -v 
c +v 

- - -f,. 

where f, is the frequency received at R ,  

fT is the frequency transmitted at T , 
fI, is the frequency received at T. 

1 
Brown, R. C.: A Textbook of Physics. Longmans, London, 1961, p. 1013 
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Because v << e ,  

c - 2 v  f;%- f T  . 
C 

(4) 

For small values of v / c  , the frequency shift of the signal received at R will be 
approximately one-half the frequency shift of the signal received at T. 

A servomechanism was devised which forced 

f; t f, = 2fREF, (5) 

where f,,, is the desired signal frequency in the absence of Doppler. Substituting 
equation (4) into equation (5) and solving for f, yields: 

c -2v 
REF ’ - f, -k f, = 2 f  

C 

C 

c - v  f REF - f = -  

By using equation (l), it is now possible to determine the frequency which will 
be received at R. 

c -v 
R f T ’  

f = -  

f = f  R R E F ‘  
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c - v  
f T ,  f = -  

R C  

Appendix A contains a description and block diagram of the servomechanism. 

It has been shown that the Doppler frequency shift can be eliminated from a 
signal under the following special circumstances : 

1. v < < c  

2. v # v ( t )  

If v = v ( t )  , then the two v ’ s  in equation (3) are not equal, because they a re  evaluated 
at different times. 

The preceding development is common in the literature on this subject. The 
case where v = v ( t )  has not been thoroughly analyzed. The case where v = v ( t )  
is treated both theoretically and experimentally in this document. 

ANALYSIS OF THE CONSTANT VELOCITY CASE 

In order to keep the analysis as general as possible, the constant velocity 
case will be rederived without the constraint that v << c . Repeating equation (1) 
and equation (3), 

, c - v  
c + v  f T ,  f =- 

where f, is the frequency received at the satellite, 

f, is the frequency transmitted from the ground, 

fi is the frequency received on the ground. 

(3) 

The servomechanism forced 
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where fREF is the desired signal frequency in the absence of Doppler. Substituting 
equation (3) into equation (8) yields: 

c - v  
c + v  
- f T  t f T  = 2fREF ’ 

c t v  f T = -  ‘REF’ 

(9) 

By substituting this into equation (l), it is possible to find the signal which will be 
received at the satellite. 

c - v  
f T  ’ f = -  

R C  

= (1 - 5) fREF.  

Note that the Doppler is not reduced to zero as before, but is reduced to 
second order in v /c . 

A normalized frequency er ror  is defined for use in subsequent sections. 

= - (V/C)* .  
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ANALYSIS OF THE VARIABLE VELOCITY CASE 

Classical Approach 

This section describes a still more general analysis of the closed-loop Doppler 
correction scheme in which v/c is significant and velocity is a function of 
time. Let 

v = v ( t ) ,  

= v t a t ,  

where v is the velocity at time t = 0, 

a is the acceleration at time t = 0. 

For short periods of time ( t  5 
station and satellite can generally be expressed as the summation of an initial 
velocity and a constant acceleration. 

100 sec), the relative velocity between a ground 

The frequency received at the satellite at time t , f, ( t )  , is a function of the 
relative velocity at time t , and the frequency transmitted at time t - T , f, (t - T). 
T is the finite propagation time of the signal from the ground to the satellite, and 
is also a function of time. Substituting equation (14) into equation (1) yields: 

c - v - a t  f ,  (t -T). 
f R ( t )  = C 

The frequency received at the ground at time t , fL( t )  , is a function of the 
relative velocity at time t - T and the frequency transmitted from the satellite 
at time t - T , f, (t - T). T is the finite propagation delay and is equal to T in 
equation (15) because the turnaround time of the signal in the Satellite is negligible 
relative to the propagation time delay. Substituting equation (14) into equation (2) 
yields : 

r -. 
f i ( t )  = f, (t - 1). 

c t v  t a  (t -T) 

5 
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Replacing t with t -T in equation (15) and substituting into equation (16) 
yields: 

c - v  - a  ( t  -T) 
c t v  + a  (t -T) f; ( t )  = f, ( t  - 2T). 

Equation (17) provides a relationship between the frequency received on the ground 
at time t , f; ( t )  , and the frequency transmitted from the ground at time t - 2T,  
f, (t - 2T). To describe the servomechanism, however, it is necessary to have 
a relationship between f, (t ) and f, ( t )  . Because there was no obvious way to 
establish this relationship, this approach was abandoned. 

Series Approach 

The equations of motion of most macroscopic objects (e.g., a satellite) gen- 
erate relatively smooth, continuous curves. Short segments of smooth continuous 
curves can be accurately represented by a truncated power series. The range 
to a satellite, for example, can be defined as: 

1 
2 

R(t) = r t vt t -at2 ,  

where R ( t)  is the range at any time, 

r is the range at time t = 0, 

v is the velocity at time t = 0, 

a is the acceleration at time t = 0. 

This equation is valid only over a finite time interval because the satellite is 
still at a finite range after infinite time. Over a proper time interval, however, 
the errors  introduced by the use of equation (18) a re  insignificant. 

Because the Doppler effect is linearly related to the rate of change of range, 
the Doppler frequency perturbation can also be adequately represented by a 
truncated power series. The phase at the satellite, at any time t , can be ex- 
pressed as: 

4 ( t )  = bo t (bl t w) t t b, t2, 

6 



where + (t)  is the phase at any time t , 

bo is the initial phase at time t = 0, 

(b, t w) is the initial frequency at time t = 0, 

b, is the initial frequency rate at time t = 0. 

In equation (19), b, is the frequency error  in radians per second caused by 
Doppler, and w is the frequency in radians per second in the absence of Doppler 
(277 fREF). For simplicity, assume that b, is small relative to b, + w (this 
assumption is justified by the experimental data) and therefore has negligible 
effect on+(t)  for small values of t .  Hence, 

where b, is a function of both the initial velocity and acceleration. 

The phase of a signal being transmitted from the ground at time t is the 
identical phase which will be received at the satellite at time t + T, if T is the 
propagation time from the ground to  the satellite of a signal arriving at the 
satellite at time t + T. Therefore, 

where +T ( t )  is the phase of the signal transmitted from the ground at any time 
t in terms of the phase at the satellite. 

The phase of a signal being received on the ground at time t is the identical 
phase transmitted from the satellite at time t - 7 ,  if 7 is the propagation time 
from the satellite to the ground of a signal transmitted from the satellite at 
time t - 7. Therefore, 

where 4; ( t )  is the phase of the signal received on the ground at time t in terms 
01 me phase zt the ~ctc!!ite. - .. 
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The servomechanism causes the sum of @T ( t )  and 4; (t)  to equal a reference, 
or 

where $ is an arbitrary initial phase angle. Substituting equation (21) and equation 
(22) into equation (23) yields: 

Both T and 7 can be expanded into a Maclaurin series so that 

t 2  

2! 
T ( t )  = T(0)  t i'(0) t t ( 0 )  -, 

7- ( t )  = 7- (0) t + (0) t t 7 (0) -. t 2  

2! 

Substituting this into equation (25) yields: 

2bo t 2 + w )  t t (bl t w )  [T (0) t ? (0) t 

2! t 2  1 .. t* 
2. + T ( 0 )  - T ( 0 )  - + (0) t - 7 (0) - 

= 2 w t  t$J.  

8 



Equating powers of t yields: 

(b, t w )  [ 2  t +(O) - ; (O) I  = 2w, 

(bl t w )  [Y (0) - 7 (O)] = 0. 

Solving equation (30) for bl yields 

- w  [?(O) - + ( O ) l  
2 t ? (0) - i ( 0 )  ’ 

b, = 

where b, is the frequency error in radians per second due to Doppler in the 
variable velocity case. The general expressions for T ( t )  and T (t)  , as  well 
as their series expansions, a re  developed in Appendix B. Substituting the ex- 
pressions for + ( t )  and + (t)  into equation (32) yields: 

1 (c t v ) v  - ra r ( c - V ) V  t ra - 
( c  -v)2 ( c  tv )2  b, = -W 

( c - v ) v  t r a  (c t v ) v  - ra I 2 +  - 

In Appendix C, a first-order approximation is made for equation (33): 

-W 

C L  

b, 2 - (v2 t ra) .  
n 

(33) 

(34) 
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- -(v2 + r a )  

C* 
- (35) 

This is in complete agreement with the constant velocity case. If the acceleration, 
a ,  in equation (35) is set equal to zero, then the normalized e r ror  calculated by 
using equation (35) will equal the normalized e r ror  found by using equation (13). 

EXPERIMENTAL TEST SYSTEM 

General Description 

A comparison of the corrected frequency at the satellite with the reference 
frequency was required to experimentally determine the quality of the Doppler 
correction scheme. However, the satellite was only a simple repeater and con- 
tained no reference clocks. It was therefore impossible to make the required 
measurements in the satellite. 

To overcome this difficulty, the system was modified so that the signal 
looped through the satellite twice. This placed the center of the system, a 
virtual satellite, on the ground. A description and block diagram of the servo- 
mechanism of the test system is contained in Appendix D. 

Because both the corrected signal at the virtual satellite and the reference 
frequency were available on the ground, it was possible to measure the quality 
of the Doppler correction scheme. 

Appendix D also contains a description and functional block diagram of the 
method used to compare the frequency at the virtual satellite, fvs , with the 
reference frequency, faF . 

Test System Analysis 

The analysis of the test system is similar to that of the operational system. 
Assume that, as in equation (20), the phase at the satellite, 4 ( t ) ,  can be expressed 
as  



where 4 ( t )  is the phase at any time t , 
bo is the initial phase at time t = 0, 

(b, tw)  is the initial frequency at time t = 0. 

As defined in the section on the analysis of the variable velocity case, b, is the 
frequency er ror  in radians per second caused by Doppler and w is the frequency 
in radians per second in the absence of Doppler (277 fREF). 

The transit time of a signal from the ground to the satellite is exactly the 
transit time of the same signal from the satellite to the ground if it is retrans- 
mitted immediately. This is intuitively justified by noting that the range up is 
equal to the range down if the signal is retransmitted immediately. The phase 
of a signal being transmitted from the ground at time t is the identical phase 
which will be received at the virtual satellite at time t + 2T, i f  T is the propaga- 
tion time from the ground to the actual satellite of a signal arriving at the actual 
satellite at time t + T. Therefore, 

where +T ( t )  is the phase of the signal transmitted from the ground at any time 
t in terms of the phase at the virtual satellite. 

The phase of a signal being received on the ground at time t is the identical 
phase which was transmitted from the virtual satellite at time t - 2 T ,  if T is the 
propagation time from the actual satellite to the ground of a signal transmitted 
from the actual satellite at time t - 7. Therefore, 

where 4; ( t )  is the phase of the signal received on the ground at time t in terms 
of the phase at the virtual satellite. 

The servomechanism causes the sum of 4T ( t )  and q5; ( t )  to equal a reference, 
o r  

where $J is the arbitrary initial phase angle. Substituting equation (37) and 
equation (38) into equation (39) yields: 

11 



bo t (bl t w )  (t t 2 T )  t bo t (bl t w )  (t - 2 7 )  = 2wt + $ ,  

2b0 t 2 (bl t w )  t t 2 (bl t w )  (T-7) = 2wt t #. 

(40) 

(41) 

As in the preceding section, T and 7 can be expanded into a Maclaurin series so 
that 

t 2  

2! 
T (t)  = T (0) t ? ( 0 )  t t Y (0) -, 

t 2  

2! 
r ( t )  = r(0) t + ( O ) t  t ?(O) -. 

Substituting this into equation (41), 

t 2  1 t 2  

2. 
t T (0) 7 - 7 ( 0 )  - i (0) t - 7 (0) -y- 

= 2 w t  +$.  

Equating powers of t yields: 

2b0 t 2 (bl t w )  [T (0) - r (0)l = $ , 

( b l t w )  [ l  + i ' ( O ) - i ( O ) l  =w, 

(bl t w )  [T (0) - 7 (O)] = 0. 

(42) 

(43) 

(44) 
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Solving equation (46) for b, yields: 

b =  -wi+(o)-+(ojj 

1 + +.(O) - i (0) 
1 , 

where b, is the frequency error  in radians per second due to Doppler. Appendix 
B contains the general expressions for T (0) and T (0). Substitution yields: 

1 r ( c -V)V t r a  (c  t v ) v  - ra  - 
(c - v)2 (c  t v)2 . ( c  -v )v  t r a  (c t v l v  - r a  

b, = -W 

In Appendix E, a first-order approximation is made for equation (49): 

The norma izec 

(49) 

theoretical e r ror  of the test system, EhT , is obtained by dividing 
equation (50) by w . 

I -  - 2  (v2 + r a j  - 
C2 

Em 

A comparison of equation (51) and equation (35) indicates that the e r ror  at the 
virtual satellite in the test system will be exactly twice the error  at the actual 
satellite in the operational system. 

The Relay satellite was used to obtain experimental data. Figures 1, 2, and 
3 show the range, velocity, and acceleration of Relay with respect to the Mojave 
ground station as a function of time after acquisition for orbit 4472, September 17, 
.l O I ? E  LJVU. 
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The first experimental run was initiated at time t = 2.75 minutes with the 
following initial conditions : 

Test No. 

1 

2 

r = 6.8 x l o 6  meters, 

v = 4.2 x l o 3  meters per second, 

a = - .25 meters per second squared. 

Difference 
Between E,, and E)NT EN, EXT 

(%) 

-3.59 parts in 10 '~  -3.54 parts in l o l o  1.4 

-7.40 parts in 1 O 1 O  -7.16 parts in 1 O l o  3.0 

The second experiment was started at time t = 25.25 minutes with the 
following initial conditions : 

r = 3.3 x l o 6  meters, 

v = 2.0 x l o 3  meters per second, 

a = 4.3 meters per second squared. 

Note that v2 >> r a  for the first part of the experiment and r a  > v2 for the 
second part, thus providing a reliable test of the theoretical prediction. 

The recorded data are in the general form of a scatter diagram as shown in 
Figure 4. A least-squares polynomial approximation is made for the data as 
discussed in Appendix F. 

Table 1 lists the normalized measured errors ,  E,,, a s  determined by the 
computer and the normalized theoretical errors  for the test system, ELT, as 
calculated in Appendix G. Because of the close agreement between the measured 
and predicted results, it is assumed that the theoretical analysis is valid. 

'Hilderbrand, F. B.: Introduction to Numerical Analysis. ch. vii, McGraw-Hill Book CO., Inc., 
New York, 1965 
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TIME AFTER SATELLITE ACQUISITION (MINUTES) 

Figure 1-Satellite Range vs Time 
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Figure 4-Scatter Diagram of  Recorded Data 

WORST-CASE ANALYSIS FOR RELAY I1 

Relay 11, launched in 1964, is in an elliptical orbit with an apogee of 7500 km 
and a perigee of 2100 km. The worst-case relative velocity and accelera- 
tion occurs when perigee is approximately overhead. For a simplified worst- 
case analysis, assume that the orbit is circular at the altitude of perigee, 2100 km, 
and that the orbital angular velocity of the satellite is constant and equal to the 
angular velocity at perigee, 7 x rad/sec. 

Let re (Figure 5) be the radius of the earth, 6371 km. Let d represent 
the distance from the center of the earth to the satellite. If a ground station 
is located at g on the surface of the earth, then the range to the satellite is:j 

3 
Handbook of Mathematical Tables. 2 d  ed., Chemical Rubber Publishing Co., Cleveland, 1964, 
p. 570 
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Figure 5-Worst-case Analysis for Relay I1 

(53) e = q t ) ,  

u t ,  

where a = angular velocity of satellite referenced to the center of the earth at 
perigee. 

19 



Therefore, 

r = (d2 t r,2- 2dre c o s  a t ) l l 2 ,  

d r  
d t  

v = - =  d r e  a s in  a t (d2 t r:- 2dr, c o s  a t)-'/*, 

(54) 

(55) 

d2 r 

d t 2  
a = - = dre  a2 cos a t (d2 + r 2 -  2dre C O S  a t ) - 1 / 2  

-d2r:a2 sin2 a t (d2 t r 2 -  2dre  cos  a t)-3/2.  (56) 

In the operational system the normalized e r ror  was, from equation (35): 

Substituting , 

d2r2a2  sin2 a t  

d2 t r,2- 2dr, c o s  a t  
= [' 

t d r e  a2 cos  a t  

IP. -d2r:a2 sin2 a t  

d2 t r 2 -  2dre cos a t  

= - (dr, u2 cos a t)/c2. (57) 

20 



When 6' = a t  = 0, E,, = E,, (max), 

ENT(max) = -dr, a2 /c2 ,  

where d = 7500 km + 6371 km, 

= 13,871 km, 

re = 6371 km, 

a = 7 x rad/sec, 

c = 3 x l o 5  km/sec, 

In the operational system the worst-case frequency er ror  due to Doppler for 
Relay I1 is 4.7 parts in 10IO. Without the Doppler correction scheme, the maxi- 
mum normalized Doppler e r ror  would be approximately 1.25 parts in 10 s. With 
the Doppler correction scheme, the maximum er ror  will occur directly overhead 
( 6  = 0); without it, the maximum Doppler occurs at the maximum range. 

CONCLUSIONS 

It has been demonstrated that the stability of ground-controlled satellite 
clocks can be greatly increased by the use of the Doppler correction scheme. 
It has been shown both theoretically and experimentally that the correction 
scheme is useful in the variable velocity case. The close agreement between 
the theoretical and measured results (Table 1) indicates that the theoretical 
analysis is valid. 

Maximum error  with the Doppler correction scheme for Relay I1 occurs 
when the satellite is directly overhead. Because the relative velocity of the 
satellite becomes zero when the satellite is directly overhead, the maximum 
error is a function of the product of range and acceleration, equation (35). The 
true significance of this variable velocity analysis is now obvious because the 
constant velocity analysis predicts zero e r ror  when the satellite is directly 
overhead, at which time the relative velocity is zero, equation (13). I 

The worst-case normalized error for Reiay II was  4.7 parts 18 lo .  ?E?A- 
out the Doppler correction scheme, this normalized e r ro r  would be greater than 
1 part in lo5. 
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APPENDIX A 

SERVOMECHANISM O F  THE OPERATIONAL SYSTEM 

A comparison of equation (1) and equation (4) indicates that, for small values 
of v/c , the Doppler frequency shift of the signal received at the satellite is 
approximately one-half the Doppler frequency shift of the signal received on the 
ground. 

where 

f, = ( C G )  f , , .  

f, is the frequency transmitted from the ground, 

f, is the frequency received at the satellite, 

f k  is the frequency received on the ground. 

Therefore, the frequency of the signal at the satellite is the average of the fre- 
quencies of the signals transmitted and received on the ground. If the average of 
the frequencies of the signals transmitted and received on the ground, f, and fit 
respectively, is maintained at f,,, , then f,,, will always be present at the 
s atellite . 

The servomechanism 

o r  

must therefore perform the following function: 

1 -  f, t f, - 2fREF' 

C I  n C  - n  :, t l R  - L A R E F  - u. 
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Figure A-1 is a simplified block diagram of the servomechanism. The sum, 
f T  and fI; , is formed in mixer 1 and is passed through a selective filter to 
mixer 2. 2 f,,, is also an imput to mixer 2. The difference output of mixer 2 is 

I 

 REF 
1 

f; t f T  - 2f,,,. 

24 
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This output is passed through the low-pass loop filter, k f (s) , and is applied as 
a correction voltage to the voltage-controlled crystal oscillator (VCXO). The 
output of the VCXO is directly f, . The correction voltage will be zero only when 

f’R t f, - 2fR,, = 0.  

When f k  ( t )  is instantaneously perturbed by Doppler, 

A correction voltage is instantaneously developed at the output of the low-pass 
filter, k f  (s ) ,  which adjusts the VCXO so that the sum of fk ( t )  and f, ( t )  is 
again 2f,,, . 

Because the average of fk and f, is maintained at fREF , f,,, will always 
be present at the satellite. 
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APPENDIX B 

CALCULATION O F  TIME DELAYS 

As discussed in the section on the variable velocity case, the range can be 
expressed as: 

1 
2 

R ( t )  = r t vt t -at2,  

where R ( t )  is the range at any time t , 
r is the range at time t = 0, 

v is the velocity at time t = 0, 

a is the acceleration at time t = 0. 

The range at some other time t + T can be expressed as: 

dR 
d t  

R ( t  t T) = R ( t )  t - T, 

where 

d R - v  t a t .  dt- (B3) 

Substituting equation (B3) and (Bl) into (B2), 

(B4) 1 
2 

R ( t  t T ) = r  + v t  + - a t 2  + v T + a t T .  

The time, T , required for a signal to reach the satellite is equal to the range 
when the signal reaches the satellite, R (t + T), divided by the speed of light, c . 
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R ( t  + T) T =  
C 

Therefore, 

R ( t  t T) = cT. 

Substitution of equation (B6) into equation (B4) yields: 

1 
2 

cT = r t vt t -a t2 t vT t at T. 

Gathering terms in T ,  

( c  - v - a t ) T  = r t vt t -a t2,  1 
2 

or  

1 r t vt + - a t 2  

c - v  -a t  
2 T =  

It is useful to expand this into a Maclaurin series of the form: 

f ( t )  = f (0) -t i (0) t. 

Therefore, 

T ( t )  = T (0) t ? (0) t, 

where 

r T ( 0 )  =-, 
c - v  
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( c  - v ) v  t ar  +(O) = 
( c  -v)2 

The range at some other time t - T can be expressed as: 

dR 
d t  

R ( t  -7) = R ( t )  - - -T ,  

where 

dR -= v t a t .  
d t  

Substituting equation (Bl) and (B15) into (B14), 

tB16) 1 
2 

R ( t  -7) = r t v t  t - a t 2  - V T  - a t  T .  

The time, T , required for a signal to arrive from the satellite is equal to the 
range when the signal was transmitted from the satellite, R ( t  - 7) divided 
by the speed of light, c . 

R(t  -7)  r =  
C 

Therefore, 

R ( t  -7) = C .  

Substitution of equation (B18) into equation (B16), 

1 
2 

c r = r  t v t  + - a t 2 - v r - a t r e  
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Gathering terms in r , 

or 

1 r t v t  + - a t *  

c t v  t a t  
2 r =  

Expansion into a Maclaurin series yields: 

7- ( t )  = 7 ( 0 )  t i (0) t ,  

where 

r 
c + v  

7 ( 0 )  = - , 

(c t v ) v  - a r  i ( 0 )  = 
( c  t v ) 2  
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APPENDIX C 

REDUCTION OF EQUATION (33) TO A FIRST-ORDER APPROXIMATION 

r ( c - v ) v  t r a  ( c t v ) v  - r a  1 - 
( c  - v)2 (c t v ) 2  b =-w 

. ( c - v ) v  t r a  ( c + v ) v  - r a  1 (33) 

J L (c i v y  ( c  t v ) 2  
L + ’  - 

To determine the first-order approximation, the following maximum antici- 
pated values must be assigned to the variables: 

r < 7 x l o6  meters 

v < 4 x lo3  meters per second 

a < 5 meters per second squared 

c = 3 x lo8 meters per second 

When these values are  substituted into the denominator, it is obvious that: 

(c  - v ) v  - r a  >, ( c - v ) v  t ra  - 
(c  -v)2 (c  t v)2 

Therefore, 

( c - v ) v  t r a  ( c t v ) v  - r a  

(c -v)2 (c t v)2 
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- (cv t v2 - r a )  (c2 - 2cv t v2)l. 

c2 >> v2. 

But 

Therefore, 

-W b, = - [c3 v t 2c2 v2 t cv3 - c2 v2 - 2cv3 - v4 
2 c 4  

t rac2 t 2 c r a v  t v 2 r a  - c3v t 2c2v2 - cv3 

- c2v2 t 2cV3 - v4 t c2ra  - 2 c v r a  t rav21, 

-w - [2c2v2 t 2 c 2 r a  - 2v4 t 2v2ra1, - - 
2 c4 

1 1 

C 2  
v2 t r a  - (v4 - v2 r a )  , 

where 

v4 

C2  
v2 t r a  >>-, 

and 

V 2  

C2  
v2 t r a  >>- r a .  

Therefore, 

-W b, % - (v2 t ra). 
C2  
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APPENDIX D 

SERVOMECHANISM O F  THE TEST SYSTEM 

As discussed in the experimental test system section, it was impossible to 
measure the quality of the Doppler correction scheme in the satellite. The 
signal was therefore looped through the satellite twice, placing a virtual satellite 
(Point A, Figure D-1) on the ground. The only additional circuit functions required 
were two frequency translators to prevent interference of the two transmitted 
signals and of the two received signals, respectively. Appendix A describes the 
operation of the basic servomechanism. 

In the test system, f,,, , is established at the virtual satellite. Figure D-2 is 
a functional block diagram of the error  measurement circuitry. Both signals 
were passed through hard-limiters, converting the sinusoidal waveforms to 
pulse waveforms. The positive-going edge of f v s  started the time interval 
counter; the positive-going edge of f, stopped the time interval counter. A 
printout recorded the time interval counts at a rate of six samples per second. 

The initial time interval represents an initial relative phase difference. Any 
subsequent change in interval represents a change in relative phase, o r  frequency 
difference . 
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APPENDIX E 

REDUCTION OF EQUATION (49) TO A FIRST-ORDER APPROXIMATION 

r ( c - v ) v t r a  ( c t v ) v - r a  1 
(49) (c -v)2 (c  t v)2 

( c - v ) v  t ra  (c t v ) v  - ra - 
(c  -v)2 (c  t v)2 

b, = -W 

To determine the first-order approximation, the following maximum antici- 
pated values must be assigned to the variables: 

r < 7 x l o 6  meters 

v < 4 x l o 3  meters per second 

a < 5 meters per second squared 

c = 3 x 10' meters per second 

When these values are substituted into the denominator, it is again obvious that: 

( c - v ) v  t ra (c  t v ) v  - ra 1 >> - 
(c  -v)2 ( c  +v)2 

Therefore, 

A comparison of equation (C2) and equation (E2) indicates that b, in the test 
system is exactly twice bl in the operational system, equation (C11). 

Therefore, in the test system: 

- 2w 
C2  

b, 2 - (v2 t ra). 
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APPENDIX F 

REDUCTION OF A SCATTER DIAGRAM TO A QUADRATIC CURVE 
BY THE CRITERLA OF LEAST-MEAN-SQUARED ERRORS 

Assume that a set of observations, 4, , 4, , . . . , +,, , which belong to an un- 
known function, 4 = f ( t) ,  at some prescribed points of the independent variable 

can be fitted by a polynomial of order n: 

The order, n , of the polynomial is chosen a priori; the coefficients, bo ,  b, , b, , . . . , bn, are  determined by the measurements. 

The unknown coefficients, bits,  of the polynomial are determined as follows. 
At each point of observation, i , form a "residual" R ,  so that: 

Ri = bo + b, t i  t . . . t bn t:- $i, (F3) 

where $i is the observed value at t i .  

Take the sum of the square of all residuals: 

m 

Q =  R:, 
i= l  

m 

Q = F. (bo t b, t i  t . . . t bn tp- 
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The quantity,Q , is by nature positive o r  in the limit zero. The zero value is 
possible only if  all of the residuals vanish independently. This implies that the 
measurements f i t  the nth order polynomial exactly. This is not the usual case. 
There is, however, a unique value of the bits for which the sum, Q, becomes a 
minimum. The polynomial associated with these bits  is the "best fit" of the 
measurements. 

This minimization principle has a unique solution in the form of a linear 
set of equations with a nonvanishing determinant. According to the principles of 
calculus, the condition of minimization requires that the partial derivative 
of Q with respect to any and all bits  vanishes. Repeating equation (F5), 

m 

Q = ) ' (bo t b, t i  t . . . t bn ti"- +i )2 .  

Taking the derivative with respect to bj yields: 

- dQ 0 = 2 f: (bo t bi t i  t . . . t b,, ti"- $i) t). 
db 

i -1 

m 

Cbi t i '=  bo t? t b, f: t / + l + .  . . t b n  t:+n, (F7) 
i n 1  i s 1  i s 1  i -1 

where 

j = O , 1 , 2 ,  ...,n. 
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c 

In this case n = 2. Equation (F7) can now be expanded as follows for j = 0, 1, 
and 2, respectively: 

t i  t b ,  2 t:, 
i=1 

+i =born t b, 
i t 1  i=l 

t i  t b ,  2 t:tb, f: t i3 ,  

i l l  i= l  i=l  i = l  

+i t i  = b o  

Because all measurements of +. were made at regular intervals of t i ,  

t i  = i A t .  

The three preceding equations may now be rewritten as: 

m m m 

+i =born t b ,  A t  i t b , A t 2  
i=1 i= l  i=l  

m m m 

A t  2 i+ i  = b o a t  i t b ,  A t 2  
is1 i=1 i-1 i r l  

i2 t b ,  A t 3 ,  ci3 

m m 

i 2  + b , A t 3  2 i3 t b ,  At4 2 i4. (F14) 
I 

A t 2  i2 +i = b o A t 2  

io1 is1 i = I  i rl  
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These equations, called the "normal equations'' of the least-square problem, 
belong to a group of linear equations which have not only a symmetric but also 
a recurrent matrix, characterized by the property 

A .  jk = A  j - l , k + I *  (F15) 

In the preceding set of equations, the bits  are the unknowns; all other terms 
are constants, The constants involve simple summations which were computed 
on a digital computer. After the constants were determined, a matrix-solving 
routine was used to evaluate the values of bo , b, , and b, . 

Table 1 lists the normalized measured errors ,  E,, , for the two experimental 
runs. 
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APPENDIX G 

CALCULATION OF ERRORS 

The theoretical errors of the test system, EhT, are calculated below. The 
errors are determined by using equation (51) and the initial condition listed in 
the experimental section. 

Experiment 1 

(4.2)2 x lo6 - 6.8 x lo6 x -25 EkT = -2 s 

32 x 1016 

= -3.54 x 10''O. 

Experiment 2 

(2.0)2 x lo6 t 3.3 x 106 x 4.3 EkT = -2 
32 x 10'6 

9 

= -7.16 x 
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